

Quizz solutions

PHYS-607: Nonlinear fibre (waveguide) optics

Fall 2022

Silica has $n_2 = 2.8 \times 10^{-20} \text{ m}^2/\text{W}$ at 1550 nm

What is the maximum nonlinear phase-shift experienced by a transform-limited Gaussian pulse of peak power 1 mW after

- a) Propagation in bulk where the focal point has a surface area of 1 μm^2 and effective propagation around the focal point of 0.5 cm (quite ambitious)
- b) In 100 km of optical fibre perfectly loss compensated with an effective area of 50 μ m².
- c) In 100 km of optical fibre with 0.2 dB/km of loss with an effective area of 50 μ m².

SOLUTIONS:

- a) 0.55 10⁻⁶ rad
- b) 0.227 rad
- c) 0.49 rad

Nonlinear effects which are defined by the intensity dependent refractive index of the waveguide are called:

- a) Raman effect
- b) Dispersive effect
- c) **Kerr effects**
- d) Soliton effect

A Gaussian pulse with a full width half maximum of $T_{\text{FWHM}} = 10 \text{ ps}$ is launched into an optical fiber with a dispersion parameter of D = 15.7 ps/nm-km a nonlinear coefficient $\gamma = 2 \text{ W}^{-1} \text{km}^{-1}$.

What should be the peak power of the pulse in order to excite a soliton of order 2 inside the fiber?

- a) 1.1 W
- b) 400 mW
- c) 872 mW
- d) 314 mW

SOLUTIONS: you should find 1.1 W

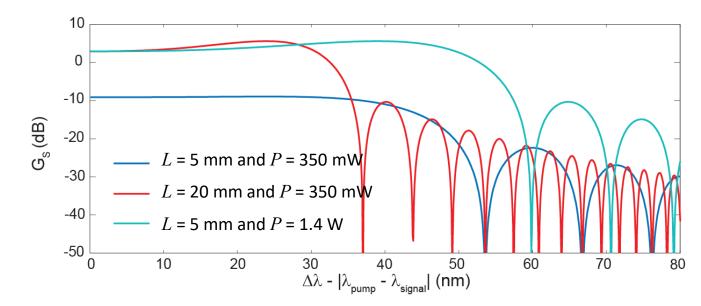
You need to calculate beta 2 from D (you should get 19.5 ps²/km) and T0 (you should get 6 ps)

We consider degenerate FWM and want to use a pump positioned at 1500 nm. We want to mix it with a signal wavelength at 1510 nm

We have a fiber with a nonlinear coefficient $\gamma = 5 \text{ W}^{-1}\text{km}^{-1}$, $\beta_2 = -20 \text{ ps}^2/\text{km}$ and negligible β_4 . What should be the pump power P_0 such that phase matching be satisfied?

- a) 1 .3 W
- b) 138.5 W
- c) 256 mW
- d) 69 W

SOLUTION: you should get 138.5 W


You need to find P_0 to have κ = 0 . You therefore need to express the frequency separation in frequency (you should get 10 nm -> $|\omega_{\rm p}-\omega_{\rm S}|$ = $2\pi(1.33)$ rad/ps). Then $P_0=\frac{|\beta_2|}{2\gamma}\left(\omega_p-\omega_{\rm S}\right)^2$

Two different lengths (5 mm and 20 mm) of the same waveguide are used for parametric amplification using the same pump (degenerated case). Three different combinations of length/pump power are tested:

- L = 5 mm and P = 350 mW
- $_{-}$ L = 20 mm and P = 350 mW
- L = 5 mm and P = 1400 mW

Match these combinations to parametric gain measured as a function of signal detuning:

 $G \propto \gamma PL$ $BW \propto \sqrt{\frac{1}{L}}$

